
Activation Density driven Energy-Efficient Pruning
in Training

Abstract—The process of neural network pruning with suitable
fine-tuning and retraining can yield networks with considerably
fewer parameters than the original with comparable degrees of
accuracy. Typically, pruning methods require large, pre-trained
networks as a starting point from which they perform a time-
intensive iterative pruning and retraining algorithm. We propose
a novel pruning in-training method that prunes a network real-
time during training, reducing the overall training time to achieve
an optimal compressed network. To do so, we introduce an acti-
vation density based analysis that identifies the optimal relative
sizing or compression for each layer of the network. Our method
removes the need for pre-training and is architecture agnostic,
allowing it to be employed on a wide variety of systems. For VGG-
19 and ResNet18 on CIFAR-10, CIFAR-100, and TinyImageNet,
we obtain exceedingly sparse networks (up to 200× reduction
in parameters and > 60× reduction in inference compute
operations in the best case) with comparable accuracies (up to
2%-3% loss with respect to the baseline network). By reducing
the network size periodically during training, we achieve total
training times that are shorter than those of previously proposed
pruning methods. Furthermore, training compressed networks at
different epochs with our proposed method yields considerable
reduction in training compute complexity (1.6 × −3.2× lower)
at near iso-accuracy as compared to a baseline network trained
entirely from scratch.

I. INTRODUCTION

Deep learning has proliferated in the past decade. Not only
has it captured the public’s imagination as a candidate for the
development of intelligent system, but it has achieved high
accuracy on difficult datasets. Particularly, deep networks have
performed well on computer vision tasks and natural language
processing [1], [2]. Part of their success has been attributed to
the networks’ depths—typical deep networks can comprise of
hundreds of layers—but this comes with the cost of having a
huge number of trainable parameters [3].

The concept of network pruning—systematically reducing
the number of parameters in a given network configuration—
has been around since the early 1990s [4], but it has only
recently begun to receive widespread attention. Over the
past five years, many network pruning strategies have been
proposed and the motivations for pruning have been explored
[3], [5]–[10]. Iandola et al. [11] have identified three ways
in which pruned architectures are superior to the networks
from which they were created: they are more efficiently trained
on distributed systems, their smaller model size makes them
easier to send to new clients (a self-driving car, for example),
and they are more suited for deployment on edge devices such
as mobile phones or embedded processors.

Most network pruning algorithms that have been proposed
follow the same structure: 1) Train a large network to a high

degree of accuracy, 2) Prune the model architecture while pre-
serving weight values, and 3) Make small adjustments to the
pruned model as needed. Typically, step 3 consists of training
the pruned model for a few epochs, having taken the weights
from the large network as the starting configuration. The need
for a large pre-trained network slows down the entire pruning
process, since it is often computationally expensive and time
consuming to train large models. The necessity of step 1 comes
from the assumption that the pruned network will train better if
it is initialized using the weights of its high-performing parent
network than if it is randomly initialized. Furthermore, most
pruning strategies rely on significance of the weight values
(say, L1 norm [12]) to decide if the connection should be
pruned or not. Thus, a pre-trained network is necessary in
such cases to assign significance.

However, Liu et al. [3] have shown that it is not necessary
to preserve weight values when moving from a large model to
a smaller model. They found a negligible discrepancy between
fine-tuning a pruned model and training that same model
from randomly initialized weights. This implies that, in order
to successfully reduce the size of a large network without
a significant loss in accuracy, it is sufficient to find only
the optimal architecture of the pruned network. Finding the
significant weights to prune or initialize a compressed network
(as in [13], [6], and [11]) is not always necessary.

Our contributions We propose an in-training pruning
method that analyzes the network performance in real-time
and optimizes the architecture throughout the training process.
Unlike other pruning methods, the method presented here does
not require a pre-trained network. It relies on the scalar metric
of activation density per layer to make decisions regarding the
pruning or compression criteria of each layer. This allows for
a fewer number of iterations during the training process with
a comparable parameter and inference compute operations
(OPS) reduction to other proposed pruning methods. Our
method also yields considerable reduction in training compute
OPS as compared to a model trained fully from scratch. This
feature is reflected in the metric of ‘training complexity’,
which we define in section IV and which we use to evaluate
the efficacy of our pruning technique.

Our method was motivated by a key observation that, for
a randomly initialized network (of sufficient initial size), the
total density of non-zero activations in the network (note,
total density calculated across all layers) decreases during the
training process with increasing epochs (see net0 graph in
Fig. 1). This reduction in activation density indicates that the
initial network net0 is overparameterized and that there is

Fig. 1. Activation energy per epoch for successively pruned networks. In (a), net0 is VGG-19. In (b), net0 is ResNet18. In both (a) and (b), net1 refers to
the pruned version of net0, and so on. All networks are trained on CIFAR-10. Total AE is calculated by summing the layer-wise AEs across all layers.

room for the reduction of layer sizes. We also find that the
activation density trend of every layer in the network varies
from one another (see Fig. 2). We interpreted the value of the
density for each layer as characteristic of its representational
inefficiency. Our interpretation implies, for example, that a
convolution layer that only activates 44% of its neurons during
a given training period is wasting 56% of its allotted capacity.
In this case, our pruning method decides that the given layer
only needs to be 44% of its initial size for the next training
round.

II. RELATED WORK

Much work has been done in the past few years with regards
to network compression. Some of the earlier approaches focus
on the idea of compressing a pre-trained network according to
some salience criteria. Denton et al. [10] apply singular value
decomposition to a pre-trained convolutional network. Han et
al. [6] identify weights that are below a certain threshold
and replace them with zeros to produce a sparse network,
which is then fine-tuned for a few iterations to produce the
final pruned network. Han et al. [7] also introduced Deep
Compression, a technique that combines pruning methods
with quantization and Huffman coding to achieve substantial
improvements in energy efficiency. Other methods prune on
the scale of channels or layers. Wen et al. [14] developed
Structured Sparsity Learning (SSL), which regularizes the
architecture of a pre-trained DNN to achieve speedups in
inference. Zhou et al. [9] enforce channel-level sparsity during
the training process.

More recently, the need for pre-trained networks has been
questioned. Liu et al. [3] advocate a rethinking of structured
pruning techniques, demonstrating that transferring weights
from pre-trained networks to pruned networks is not as ben-
eficial as is traditionally thought. Concurrently, Frankle &
Carbin [8] introduced the “lottery ticket hypothesis,” which
theorizes the existence of small sub-networks (‘winning tick-
ets’) that train faster and to the same degree of accuracy as
the larger networks in which they were found. They propose
Iterative Magnitude Pruning that finds winning tickets that are
90−95% less dense (in terms of parameters) than their original
counterparts. The main difference between our technique
and previous works is that the activation density driven
pruning approach can be applied real-time during training

and completely get rids of the need for pre-trained models
to perform compression. This is a first-of-its-kind analysis
that allows for structured layer-wise network compression,
reducing training complexity while still producing high-
performing networks.

III. PRUNING IN TRAINING METHODOLOGY

The key feature of our method is what we have called
“activation energy (AE) analysis”, a moniker derived from
the correlation between non-zero activations in the network
and the number of multiply-accumulate (MAC) operations
that the network performs. Periodically throughout the training
process, we count the number of activations that are non-zero
(equivalent to counting positive activations, since the negatives
are zeroed out by the ReLU activation [15]) and divide by the
number of total activations, yielding an activation density or
energy. AE of every layer serves as a good metric to decide
its compressed size. Essentially, we monitor the AEs of the
layers during the training process and prune the layers based
on the density at regular training intervals. For the networks
that we tested on, it was sufficient to multiply the activation
densities by the layer size at a current training epoch to obtain
the layer sizes of the pruned network for the next training
epoch. Note, activation energy and activation density are used
interchangeably in the paper.

Algorithm 1 outlines our proposed approach. The key steps
of our pruning in training method are: 1) Define an initial
network netinitial or net[0] and train it until a pruning criteria
ρ is reached; 2) Perform AE analysis on the network and
obtain the density per layer; 3) For each layer, determine
the new layer size by multiplying the net[0] layer size by
the AE of that layer; 4) Define a network net[1] using the
newly generated layer sizes. This network will be functionally
identical to net[0], just smaller; 5) Repeat steps 1-4 until a
stopping criteria δ is reached.

We found that it did not make a difference to training
convergence or final accuracy whether the pruned network
(say, net[1]) was initialized with random weights or with learnt
weights from the larger network (say, net[0]). For simplicity,
we chose to randomly initialize the network in each pruning
round. Note, the activation density or AE only indicates the
total number of filters or weights to remove at each pruning
step. There is no notion of significant weights in this analysis

Algorithm 1: Activation Density driven Pruning in
Training

Input: Training dataset and randomly initialized
network netinitial

Output: Trained and pruned network netfinal
net[0] = netinitial
//Note, net[0] can be a large network like {VGG-19,

ResNet18};
epoch = 0;
index = 0;
while not stopping (δ) criteria do

net = Randomly Initialized (net[index]);
while not pruning (ρ) criteria do

train(net, epoch);
for L in net.Layers do

#nonzero[L] =
count nonzero activations(L);

AE[L] = #nonzero[L]
#total[L] ;

end
epoch+ +;
//Note, we train the network net[index] while

monitoring the layer-wise AE till ρ is satisfied.
end
index+ +;
for L in net.Layers do

net[index].LayerSize[L] = AE[L]
×net[index− 1].LayerSize[L];

end
//Note, we prune the network net[index− 1] to get
the compressed network net[index] based on AE
per layer. The pruning continues till δ is satisfied.

end
netfinal = net[index];

that tells us which specific filters to keep or prune. Thus, we
randomly remove the filters at every layer based on the density.
The fact that our approach is independent of pre-initialization
and significant weights implies that network architecture is key
for compression, supporting the results of Liu et al. [3].

A. Pruning (ρ) Criteria and Stopping (δ) Criteria

Algorithm 1 describes two different criteria: ρ indicates
when to stop the training of the initial network as well as each
successively pruned network (net[index]); and δ indicates
when to stop the pruning process altogether. Both of these
criteria are most easily understood from a visual inspection of
the total AE for each network as the training progresses. Fig.
1 shows a typical graph of AE vs. epoch. In Fig. 1 (a), net0
is a VGG-19 model trained on CIFAR-10. net1 and net2 are
successively pruned models.

AE for net0 decays throughout the entire training process
in Fig. 1 (a). However, after a certain point (approximately
100 epochs) it flattens out. Interestingly, we observed a cor-
respondence between this saturation of AE and a saturation
of the network accuracy. Both the accuracy and the AE for a

given training period can be characterized by two regimes: 1)
Before the saturation point, both quantities exhibit noticeable
long-term trends as well as short-term fluctuations; 2) After the
saturation point, both quantities stabilize and their derivatives
seem to approach zero. Based on this observation, we choose
the pruning criteria ρ to be equivalent to this saturation
point (100 epochs in net0, for example). Training any further
beyond ρ results in minimal change in AE/accuracy and
unnecessarily increases the training time. For net1 and net2
in Fig. 1 (a), the saturation point ρ occurs at approximately 70
epochs. Note, in Fig. 1, we trained each network well past their
saturation points for the purpose of demonstrating network
behavior in the post-saturation regime. In practice, we stop
training each network at their respective ρ values.

The second stopping criteria δ is determined on the basis
of the overall shape of AE vs. epoch curve for each network.
net0 can be characterized as convex, net1 as flat, and net2 as
concave for the VGG-19 CIFAR-10 graphs in Fig. 1 (a). We
interpreted the convexity of net0 as an indicator of overpa-
rameterization and that, since AE went down as accuracy went
up, the network learned to ignore redundant connections. This
means that we can remove those redundancies without signifi-
cantly damaging the network’s performance. net2, in contrast,
trended upwards; by our interpretation of the AE metric, this
indicates that the network learned to utilize more connections
in order to improve its accuracy. Removing connections further
will drastically reduce the accuracy of the network. Thus, we
decide to stop the overall pruning process when we see an
upward-trending or concave AE profile.

In practice, the ρ criteria is determined by monitoring the
total AE during training. If AE does not change a lot (∆AE <
0.001) between two or more consecutive epochs, we label that
as the saturation point and prune the layers based on the layer-
wise densities obtained at the end of that particular epoch. The
δ criteria is determined by plotting the AE profile once ρ is
satisfied, and labeling it as either concave, flat, or convex.

B. Layer-wise sensitivity to pruning

While the total AE (in Fig. 1) of the network provides a
convenient and interpretable stopping criteria (i.e. understood
intuitively), the pruning process itself relies only on the layer-
wise AE profile. For VGG-19 (see Fig. 2), we noticed that the
layer-wise AE profiles varied greatly: layers 1-8 exhibited the
same concavity seen in the total AE profile, though the scale
of the AE profiles tended to increase towards deeper layers.
That is, the AE value of deeper layers, say layers 7 & 8, at
the saturation point ρ tended to be lower than the AE value
of shallower layers, say layers 1 & 2. Layers 9-16 exhibited
varying degrees of convexity, in opposition to the total AE
trend of the network.

For the first half of the VGG-19 network, AE decreases with
layer depth. The trend reverses after the network’s midpoint
(after layer 8): AE starts to increase as the network gets deeper.
This observation aligned with the discussion of layer-wise
pruning in [5]. The authors in [5] found using principal compo-
nent analysis (PCA) that the number of significant dimensions

Fig. 2. Activation density per layer as training proceeds for VGG-19 on CIFAR-10. We did not include pooling layers or the final fully-connected layer,
as there was no additional information present in those layers. The trend of total decreasing activation energy per layer can be seen here. Additionally, we
observe a convex energy profile for the first eight layers and a concave profile for the second eight layers.

TABLE I
SUMMARY OF RESULTS.THE FINAL PRUNED MODEL OBTAINED FROM OUR METHOD FOR EACH SCENARIO HAS BEEN HIGHLIGHTED.

Configuration Accuracy Parameters MACs Training Epochsa
reduction reduction ρ

CIFAR-10, ResNet18
net 0 [64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512] 97 % 1x 1x 100 epochs
net 1 [34, 29, 41, 25, 33, 58, 78, 27, 65, 71, 83, 46, 69, 120, 191, 219, 288] 97 % 7.3x 6.0x 70 epochs
net 2 [21, 16, 30, 10, 22, 24, 47, 9, 39, 26, 48, 12, 39, 41, 85, 63, 188] 95 % 41.2x 23.2x 70 epochs
net 3 [14, 9, 21, 5, 15, 13, 32, 5, 26, 13, 34, 5, 25, 21, 45, 12, 142] 91 % 199.3x 67.1x N/A

CIFAR-10, VGG-19
net 0 [64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512] 97 % 1x 1x 100 epochs
net 1 [18, 23, 47, 25, 54, 51, 62, 61, 197, 258, 378, 322, 402, 383, 259, 134] 94 % 3.1x 5.6x 70 epochs
net 2 [10, 9, 30, 11, 21, 31, 22, 21, 62, 70, 113, 141, 256, 299, 194, 71] 93 % 10.3x 27.4x N/A

CIFAR-100, ResNet18
net 0 [64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512] 81.0 % 1x 1x 25 epochs
net 1 [39, 31, 49, 24, 44, 54, 90, 36, 84, 88, 155, 65, 136, 130, 231, 105, 300] 79.0 % 7.6x 5.1x N/A

CIFAR-100, VGG-19
net 0 [64, 64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512] 76.0 % 1x 1x 25 epochs
net 1 [34, 23, 51, 30, 63, 63, 73, 82, 210, 285, 333, 357, 317, 259, 181, 106] 73.0 % 3.9x 5.3x N/A

TinyImageNet, ResNet18
net 0 [64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512] 51.54 % 1x 1x 25 epochs
net 1 [31, 21, 47, 27, 48, 62, 99, 58, 94, 85, 161, 69, 133, 93, 152, 56, 247] 50.51 % 10.6x 4.7x N/A
aTraining time until saturation point. The reported accuracies are from a full training cycle (210 epochs), except for TinyImageNet, which was trained
for 60 epochs.

contributing to the variance of the activations decreased past
the mid-point of a VGG network. They removed the deeper
layers based on this observation, and found a negligible degra-
dation of accuracy. Along similar lines, we also interpreted
the reversed AE trend after layer8 of VGG-19 to mean that
the last layers were no longer identifying increasingly abstract
features from the input data and that removing them would
have little effect on the network’s performance. However,
we found that removing whole layers severely degraded the
accuracy of the pruned networks. For VGG-19 on CIFAR-10,
the accuracy of our first pruned network (with just the first 8

layers intact and pruned based on AE) never exceeded 70%,
even after a full training cycle (210 epochs with learning rate
decay). This implies that depth is significant to achieving good
training convergence. Furthermore, we found that the overall
reduction in inference compute OPS we achieved with AE-
based pruning on a VGG-19 network is higher than that of
[5] at iso-accuracy (see Section IV.D), even without removing
the latter layers.

Analysing the layer-wise AE profile (not shown here) of
a ResNet18 model trained on CIFAR-10 shows a uniform
concave trend across all layers similar to the total AE trend (as

in net0 of Fig. 1 (b)) with no reversal at the network’s mid-
point. To perform network agnostic pruning without limiting
the training convergence, we, therefore, use AE as an indicator
of compression width per layer and not of the overall depth.

IV. RESULTS

We evaluate our pruning in training strategy on two com-
monly used networks: VGG-19 and ResNet18 for CIFAR-
10, CIFAR-100 [16], and TinyImageNet datasets [17]. We
imported github models from [18] for implementing our
experiments in PyTorch. We used similar hyperparameters as
[8] and [19] to train our models on CIFAR-10/100 and Tiny
ImageNet, respectively.

A. Energy analysis

Our results are summarized in Table I. For energy calcula-
tion or net inference OPS, we specify each MAC operation
at the register transfer logic (RTL) level for 45nm CMOS
technology [6]. Considering 32-bit floating point operations,
the energy per MAC (EMAC) is estimated as 4.6pJ . Total
MAC energy across all N layers of a network net can be
specified as Enet = (

∑N
i=1 # MACi)∗EMAC . For a particular

convolutional layer of a network with N input channels, M
output channels, input map size I , weight kernel size k and
output size O, total MAC count is # MAC = O2 ∗N ∗k2 ∗M .
Note, this energy calculation is a rather rough estimate which
does not take into account memory access energy and other
hardware architectural aspects such as input-sharing, weight-
sharing or zero-checker logic.

In Table I, ‘MACs reduction’ is defined as Eprunednetwork

Ebaseline
.

net0 in each case serves as the baseline. We also specify the
‘parameters reduction’ computed with respect to the baseline.
The best performance of our pruning algorithm was obtained
for ResNet18 on CIFAR-10, where we achieved a 200x reduc-
tion in parameters with 6.2% reduction in accuracy compared
to baseline. We observe a natural tradeoff between accuracy
and MACs reduction. For all scenarios in Table I, the final
pruned model chosen is net1 (except CIFAR-10 ResNet18
case for which we choose net2). Pruning beyond that (say
net2, net3 for CIFAR-10) yields a concave AE profile (see
Fig. 1) which activates the stopping criterion δ.

Across all datasets, our pruning algorithm produced more
accurate ResNet-type models (with lower accuracy loss com-
pared to baseline) than it did for VGG-type models. The
compression in terms of MACs reduction achieved with VGG
is slightly higher than ResNet (at equivalent pruning levels).
Although not reported in Table I, we noted that the total AE
for ResNet18 remained at a higher point throughout the entire
pruning process than that of VGG-19, which can be seen in
Fig. 1. For VGG-19 net0, the total AE value started around
0.5 and decreased to approximately 0.3 over the course of
training. For the corresponding ResNet18 network net0 in
Fig. 1, the AE started 10% higher. We attribute this increased
density to the shortcut connections in the residual network
architecture. Throughout the training process, the densities of
the ResNet layers maintained a 10% higher AE over their VGG

TABLE II
TRAINING COMPLEXITY FOR OUR PRUNING METHOD

Network ResNet18 VGG-19
CIFAR-10 CIFAR-100 Tiny ImNet CIFAR-10 CIFAR-100

net0 210.0 (1x) 210.0 (1x) 60.0 (1x) 210.0 (1x) 210.0 (1x)
net1 135.0 (0.64x) 66.2 (0.32x) 37.7 (0.62x) 120.2 (0.57x) 64.6 (0.31x)
net2 120.8 (0.58x) - - - -

counterparts. Since the pruned network’s size is determined
from AE (see Algorithm 1), higher value of AE implies lower
network compression which justifies our ResNet vs. VGG
results.

B. Training complexity

Our method trains progressively smaller networks (networks
pruned at each saturation point ρ) which reduces the overall
training complexity, a remarkable advantage of pruning in
training. We define ‘training complexity’ as:∑

neti

(MACs reductionneti)
−1 × (# training epochsneti) (1)

where neti is the set of successively pruned networks (i.e.
{net0, net1, ...}) for a given starting configuration. In Ta-
ble I, we specify the training epochs for each network
(# training epochsneti) until the saturation or pruning criteria
ρ is satisfied. As an example, training complexity for CIFAR-
100 is calculated as 25 ∗ (MACs reduction)−1

net0 + 210 ∗
(MACs reduction)−1

net1.
It was our original goal to produce a pruning method for

implementation in resource-limited environments; this moti-
vated us to focus on the easily-computable heuristic of activa-
tion density and prune according to that. With the training
complexity defined as above, we are essentially measuring
the amount of time and training energy required to achieve a
given model accuracy, compression (‘parameters reduction’),
and efficiency (‘MACs reduction’). Table II shows the training
complexity of selected networks from our pruning procedure.
Note that the networks referred to by Table II across different
datasets are same as that of Table I. For ResNet18 on CIFAR-
10, we see that net1 is objectively better than net0, since it
achieved the same accuracy as net0 but with fewer parameters,
fewer MACs, and a lower training complexity. Note that, in
our evaluation in Eqn. 1, the final pruned network as well as
the baseline for CIFAR-10,100 (Tiny ImageNet) was trained
for 210 (60) epochs, respectively.

C. Visualization

In addition to plotting the total AE per epoch for each
successively pruned network, it proved helpful to visualize
the increasing density using a colormap. The result of this
visualization is shown in Fig. 3 for VGG-19 on CIFAR-10.
For each network, we show the input as well as colormaps
corresponding to certain layers in the network (the same layers
are shown for net0 and net2). We generated the colormaps by
taking the average of the output activations across all the filters
in a given layer. Although certain layers break the pattern, we
see an overall trend of higher AE (more color) in the layers
of net2 than in the layers of net0, the baseline network.

Fig. 3. Colormap visualization of the output activations of selected layers in
each network. From left to right, top to bottom, the layers represented are:
input, 1, 3, 5, 7, 9, 11, 13, 15, 17. For each network and layer, activations
from all filters were averaged to produce the colormap shown here.

TABLE III
COMPARISON WITH PREVIOUS WORK FOR VGG-19 CIFAR-100

Authors Training Accuracy Parameters MACs
complexity reduction reduction

Garg et al. [5] 206.6 71 % 9.1x 3.9x
Liu et al. [12] 260.0 73 % 8.7x 1.6x

Ours 64.6 73 % 3.9x 5.3x

D. Comparison with previous work

One of the notable differences of our proposed method
against previously proposed pruning techniques is that it is
independent of having pre-trained initialization. We optimize
the network architecture real-time during training which in
turn yields additional training complexity reduction. Table
III compares our results with that of two recent works [5],
[12] that aimed to reduce the total number of time intensive
pruning-retraining iterations. However, both works still relied
on fully or partially trained networks as a starting point.

For example, Liu et al. [12] train VGG-19 for 160 epochs,
apply their pruning method, then train the pruned network
(with a MACs reduction of 1.6x) for another 160 epochs.
The initial training adds an unavoidable ‘160 epochs’ of
training complexity. Similarly, Garg et al. use PCA on a
fully pre-trained network to find the optimal architecture
in one single shot. Our method achieves a better training
complexity score because we prune in training, allowing us
to only train the original (1x MACs reduction) network for 25
epochs before pruning it. When we finally train all the way
to a decent accuracy, the MACs in our pruned model have
been sufficiently reduced that the final training period of 210
epochs does not incur a heavy training complexity penalty.
A noteworthy observation here is that our approach yields the
highest benefits in terms of MACs reduction which establishes
the effectiveness of the AE driven pruning for structured layer-
wise network compression. Although not reflected in Table III,
we achieve comparable accuracy and compression to many
of the works mentioned in the related work section with the
additional benefit of lower training complexity.

V. CONCLUSION

We propose a novel pruning in training method that yields
significant compression benefits on VGG, ResNet-like archi-
tectures. To conduct structured layer-wise pruning, we per-
form an ‘Activation Energy’ analysis, a simple yet powerful
heuristic that provides a structured and visually interpretable
way of optimizing the network architecture. Furthermore,

the progressive downsizing of a network during the training
process yields training benefits. We get considerable benefits
in training complexity as well as MACs or compute OPS
reduction over the baseline unpruned model as well as previ-
ously proposed pruning methods. This can be attributed to the
pre-training and significant filter independence of our method
and the structured AE driven compression. The improved
training/inference complexity reduction makes our proposed
algorithm most desirable for implementation on resource-
limited systems, such as mobile devices.

Finally, we would like to consider other ramifications of
our technique. In essence, our method penalizes networks for
having zeros in their activations, forcing the pruned network to
have a denser set of activations in comparison to the baseline.
A possible negative consequence of enforcing higher density
without zeros for ReLU-based networks is that they will not
be able to learn non-linearities due to the linear profile of the
ReLU function in the regime of positive-only inputs. In the
limiting case where a network becomes 100% dense on a given
dataset—where there is never an activation that is zero—the
network will be over-fitted and have a greatly reduced ability to
generalize on test data. However, the existence of an activation
energy saturation point implies that it will be very difficult to
create such a 100% dense network.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in ICCV, 2016, pp. 770–778.

[3] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” arXiv:1810.05270, 2018.

[4] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
NIPS, 1990, pp. 598–605.

[5] I. Garg, P. Panda, and K. Roy, “A low effort approach to structured cnn
design using pca,” arXiv:1812.06224, 2018.

[6] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in NIPS, 2015, pp. 1135–1143.

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2015.

[8] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv:1803.03635, 2018.

[9] H. Zhou, J. M. Alvarez, and F. Porikli, “Less is more: Towards compact
cnns,” in ECCV. Springer, 2016, pp. 662–677.

[10] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in NIPS, 2014, pp. 1269–1277.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv:1602.07360, 2016.

[12] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in IEEE
ICCV, 2017, pp. 2736–2744.

[13] J. Frankle, K. Dziugaite, A. Element, D. M. Roy, and M. Carbin,
“Stabilizing the lottery ticket hypothesis,” arXiv:1903.01611v2, 2019.

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” 2016.

[15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in ICML, 2010, pp. 807–814.

[16] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[17] [Online]. Available: https://tiny-imagenet.herokuapp.com/
[18] [Online]. Available: www.github.com/kuangliu/pytorch-cifar
[19] [Online]. Available: https://github.com/tjmoon0104/Tiny-ImageNet-

Classifier

